Search results for "Heisenberg groups"

showing 3 items of 3 documents

Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups

2020

This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…

01 natural sciencesmatemaattinen analyysiCombinatoricsCorona (optical phenomenon)Mathematics - Metric Geometry0103 physical sciencesHeisenberg groupClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsCommutative propertyPhysicsApplied MathematicsHeisenberg groups010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityGraphcorona decompositionMathematics - Classical Analysis and ODEs35R03 26A16 28A75low-dimensional intrinsic Lipschitz graphs010307 mathematical physicsmittateoriaLipschitz extension
researchProduct

Counting and equidistribution in Heisenberg groups

2014

We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension $2$. We prove a Mertens' formula for the integer points over a quadratic imaginary number fields $K$ in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over $K$ in Heisenberg groups. We give a counting formula for the cubic points over $K$ in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over $K$, and a counting and equidistribution result for …

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]11E39 11F06 11N45 20G20 53C17 53C22 53C55chainEquidistribution theorem01 natural sciencesHeisenberg groupequidistributioncommon perpendicularIntegerLight cone0103 physical sciencesHeisenberg groupcubic point0101 mathematicsCygan distanceMertens formulaComplex projective planeMathematicsDiscrete mathematicsAMS codes: 11E39 11F06 11N45 20G20 53C17 53C22 53C55Mathematics - Number TheorySesquilinear formHeisenberg groups010102 general mathematicsHermitian matrixcomplex hyperbolic geometry[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]sub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]counting010307 mathematical physics
researchProduct

C1,α-regularity for variational problems in the Heisenberg group

2017

We study the regularity of minima of scalar variational integrals of $p$-growth, $1<p<\infty$, in the Heisenberg group and prove the H\"older continuity of horizontal gradient of minima.

osittaisdifferentiaaliyhtälötNumerical AnalysisregularityHeisenberg groupsApplied Mathematicsp-Laplacian010102 general mathematicsScalar (mathematics)subelliptic equationsHölder condition01 natural sciences35H20 35J70010101 applied mathematicsMaxima and minimaMathematics - Analysis of PDEsweak solutionsPhysics::Atomic and Molecular Clustersp-LaplacianHeisenberg group0101 mathematicsAnalysisMathematical physicsMathematicsAnalysis &amp; PDE
researchProduct